9 research outputs found

    Extreme Value Theory and Value at Risk : Application to Oil Market

    Get PDF
    Recent increases in energy prices, especially oil prices, have become a principal concern for consumers, corporations, and governments. Most analysts believe that oil price fluctuations have considerable consequences on economic activity. Oil markets have become relatively free, resulting in a high degree of oil-price volatility and generating radical changes to world energy and oil industries. As a result oil markets are naturally vulnerable to significant negative volatility. An example of such a case is the oil embargo crisis of 1973. In this newly created climate, protection against market risk has become a necessity. Value at Risk (VaR) measures risk exposure at a given probability level and is very important for risk management. Appealing aspects of Extreme Value Theory (EVT) have made convincing arguments for its use in managing energy price risks. In this paper, we apply both unconditional and conditional EVT models to forecast Value at Risk. These models are compared to the performances of other well-known modelling techniques, such as GARCH, historical simulation and Filtered Historical Simulation. Both conditional EVT and Filtered Historical Simulation procedures offer a major improvement over the parametric methods. Furthermore, GARCH(1, 1)-t model may provide equally good results, as well as the combining of the two procedures.Extreme Value Theory, Value at Risk, oil price volatility, GARCH, Historical Simulation, Filtered Historical Simulation.

    Extreme Value Theory and Value at Risk : Application to Oil Market

    Get PDF
    Recent increases in energy prices, especially oil prices, have become a principal concern for consumers, corporations, and governments. Most analysts believe that oil price fluctuations have considerable consequences on economic activity. Oil markets have become relatively free, resulting in a high degree of oil-price volatility and generating radical changes to world energy and oil industries. As a result oil markets are naturally vulnerable to significant negative volatility. An example of such a case is the oil embargo crisis of 1973. In this newly created climate, protection against market risk has become a necessity. Value at Risk (VaR) measures risk exposure at a given probability level and is very important for risk management. Appealing aspects of Extreme Value Theory (EVT) have made convincing arguments for its use in managing energy price risks. In this paper, we apply both unconditional and conditional EVT models to forecast Value at Risk. These models are compared to the performances of other well-known modelling techniques, such as GARCH, historical simulation and Filtered Historical Simulation. Both conditional EVT and Filtered Historical Simulation procedures offer a major improvement over the parametric methods. Furthermore, GARCH(1, 1)-t model may provide equally good results, as well as the combining of the two procedures

    Extreme Value Theory and Value at Risk: Application to oil market

    No full text
    International audienceRecent increases in energy prices, especially oil prices, have become a principal concern for consumers, corporations, and governments. Most analysts believe that oil price fluctuations have considerable consequences on economic activity. Oil markets have become relatively free, resulting in a high degree of oil-price volatility and generating radical changes to world energy and oil industries. Consequently, oil markets are naturally vulnerable to significant high price shifts. An example of such a case is the oil embargo crisis of 1973. In this newly created climate, protection against market risk has become a necessity. Value at Risk (VaR) measures risk exposure at a given probability level and is very important for risk management. Appealing aspects of Extreme Value Theory (EVT) have made convincing arguments for its use in managing energy price risks. In this paper, we model VaR for long and short trading positions in oil market by applying both unconditional and conditional EVT models to forecast Value at Risk. These models are compared to the performances of other well-known modelling techniques, such as GARCH, Historical Simulation and Filtered Historical Simulation. Both conditional EVT and Filtered Historical Simulation procedures offer a major improvement over the conventional methods. Furthermore, GARCH(1, 1)-t model may provide equally good results which are comparable to two combined procedures. Finally, our results confirm the importance of filtering process for the success of standard approaches

    Extreme Value Theory and Value at Risk: Application to oil market

    No full text
    Recent increases in energy prices, especially oil prices, have become a principal concern for consumers, corporations, and governments. Most analysts believe that oil price fluctuations have considerable consequences on economic activity. Oil markets have become relatively free, resulting in a high degree of oil-price volatility and generating radical changes to world energy and oil industries. Consequently, oil markets are naturally vulnerable to significant high price shifts. An example of such a case is the oil embargo crisis of 1973. In this newly created climate, protection against market risk has become a necessity. Value at Risk (VaR) measures risk exposure at a given probability level and is very important for risk management. Appealing aspects of Extreme Value Theory (EVT) have made convincing arguments for its use in managing energy price risks. In this paper, we model VaR for long and short trading positions in oil market by applying both unconditional and conditional EVT models to forecast Value at Risk. These models are compared to the performances of other well-known modelling techniques, such as GARCH, Historical Simulation and Filtered Historical Simulation. Both conditional EVT and Filtered Historical Simulation procedures offer a major improvement over the conventional methods. Furthermore, GARCH(1, 1)-t model may provide equally good results which are comparable to two combined procedures. Finally, our results confirm the importance of filtering process for the success of standard approaches.Extreme Value Theory Value at Risk Oil price volatility GARCH Historical Simulation Filtered Historical Simulation
    corecore